祝孩子们天天健康快乐!

 找回密码
 注册

搜索
热搜: 儿童 教育 英语
楼主: chen_crx
打印 上一主题 下一主题

[格林·杜曼(美)] 如何教宝宝数学

[复制链接]
111#
发表于 2007-2-3 16:30:06 | 只看该作者
 怀尔斯的证明是否正确?这有待数学家们详细的审查。不过,国际数论权威邦别里、里贝特、梅热、阿德勒曼等均对此表示乐观的态度。这是因为怀尔斯研究作风一向严谨细致,而且他的推理是以近30年来诸多数学家的成果为根据,这些根据都是可靠的。

  现在看来,费尔马当初的“批注”,如果不是开玩笑的话,那么,他的“证明”一定是有问题的。因为仅用当时数学知识,是根本无法证明这个定理的。不过,开玩笑也好,犯错误也好,费尔马的“批注”毕竟建立了历史的功勋,因为他吹响了攻克费尔马大定理的进军号。
回复 支持 反对

使用道具 举报

112#
发表于 2007-2-3 16:30:45 | 只看该作者
现代数学的三大难题

   费尔马是法国数学家。生于1601年,他在法国杜鲁兹学习法律并以律师为职业,数学只是他的业余爱好。他的成就并不在于他曾经承办过什么惊天动地的大案要案,或是以他的能言善辩使某个死刑犯无罪开释。他的名字之所以流传千古主要因为他“不务正业”地在数学领域中的取得许多伟大成就。他对数论和微积分作出了一流的贡献,他也是解析几何的发明者之一,并且与帕斯卡一起建立了概率论的基础,他一生很少发表数学论文,他的研究成果是在他死后由他的儿子整理出版的。

  1621年,费尔马买了一本古代数学家丢番都的《算术》的法译本开始研读,直到他死后,人们发现在这本书中关于不定方程“x2+y2=z2”的全部正整数解的那一页上,费尔马用拉丁文写了一段话:“任何一个数的立方,不能分解成两个数的立方和,任何一个数的四次方,不能分解为两个数的四次方的和。一般来说,任何次幂,除平方以外,不能分解成其它两个同次幂之和。”
回复 支持 反对

使用道具 举报

113#
发表于 2007-2-3 16:31:04 | 只看该作者
 这段话,用现在的数学语言说,就是:当n为大于2的整数时,方程xn+yn=zn不可能有整数解。这就是被称为近代数学三大难题之一的“费尔马大定理”。三百多年来,许多数学家对这个“定理”进行了证明,陆续取得进展,直到1993年,才为英国数学家怀尔斯彻底证明。当然,他的证明还有待权威数学家们仔细地审查。

  哥德巴赫是普鲁士派往俄国的一位公使,后来,他成了一名数学家。他常与欧拉通信讨论数学问题。1742年,哥德巴赫在与欧拉的通信中提出了一个猜想。这封信及欧拉的回信传播出来后,数学家把他们通信中提出的问题,叫做哥德巴赫猜想:

  “每一个大于或等于6的偶数,都可以表示为两个奇素数的和。每一个大于或等于9的奇数,都可以表示为三个奇素数的和。”
回复 支持 反对

使用道具 举报

114#
发表于 2007-2-3 16:31:36 | 只看该作者
 1930年,数学家西涅日尔曼证明了“每一个大于或等于2的整数,都可以表示为不超过c个素数的和。”还估算了c不会超过s,s≤800000。以后数学家又把s的值缩小。1937年得到s≤67。

  1937年,苏联名家维诺格拉多夫证明了:“充分大的奇数,都可表示为三个奇素数的和。”可是他估算的这个“充分大的数”实在太大了。

  这时又有人从另一方面着手,改为证明:“每一个充分大的偶数,都是素因子个数不超过m与n的两个数的和。”这个命题简记为“m+n”:如果能证明“1+1”,哥德巴赫猜想就算是解决了。

  1920年,挪威数学家布朗证明了“9+9”;德国数学家拉代马哈1924年证明了“7+7”;英国数学家埃斯特曼1932年证明了“6+6”;……;三十年代,我国数学家华罗庚证明了“几乎所有的”偶数“1+1”成立;1956年我国数学家王元证明了“3+4”;同年苏联数学家维诺格拉多夫证明了“3+3”;1957年王元又证明了“2+3”;1962年我国数学家潘承洞证明了“1+5”;1963年,王元、潘承洞、巴尔巴恩又分别证明了“1+4”;1965年,维诺格拉多夫,朋比尼,布赫夕塔夫又证明了“1+3”。
回复 支持 反对

使用道具 举报

115#
发表于 2007-2-3 16:31:57 | 只看该作者
 1966年,我国数学家陈景润宣布证明了“1+2”。至1973年,陈景润的论文正式发表,在世界上引起轰动。这是迄今为止最好的结果。

  “近代三大难题”中的另一题是“四色问题”,这是由英国人克里斯1852年提出来的。他在给他的兄弟费雷缀克的信中写道:“画在一张纸上的每一幅地图,都可只用四种颜色着色,就能使有共同边界的国家有不同的颜色。”有很多人都想证明这个问题,但后来却发现他们的证明不严密。

  电子计算机的飞速发展为这些难题的攻克创造了条件。许多数学家把证题思路设计成程序而把繁复的运算交给计算机去完成。这样一来,先后有好几个数学家宣布他们在计算机上证明了“四色定理”。

  这几个定理的证明过程中,数学家们创造了许多新的方法。这些方法本身的意义就不亚于他们要证的定理。三百多年来,为了解决这些难题,数学家们付出了艰巨的努力。他们锲而不舍,勇于探索的精神,值得我们学习。
回复 支持 反对

使用道具 举报

116#
发表于 2007-2-3 20:18:04 | 只看该作者
月亮宝石的价值

   你看过《月亮宝石》这本书吗?《月亮宝石》是十九世纪英国著名作家威廉·威尔基·柯林斯(1824-1889)的代表作,这本书被后世誉为“第一部英国侦探小说,也是最伟大的一部”。柯林斯也因此而被戴上“现代侦探小说的鼻祖”的桂冠。以写福尔摩斯探案小说闻名今世的柯南·道尔也在很大程度上受到他的影响。

  这部小说是围绕着一颗价值连城的黄色的印度钻石而展开的。这颗宝石原来一直被镶嵌在一尊四只手的印度神--月亮神的前额上。

  1799年,英国侵略者攻入印度圣城塞林加柏尔。官兵烧杀劫掠,无恶不作--就象他们当年在我国焚毁园明圆那样。英国侵略军军官亨卡什抢到这颗宝石后,把它带回英国。而印度爱国者不甘心国宝流落异邦,也跟踪来到英国。伺机夺回。亨卡什嫁祸于人,临死前把宝石送给侄女雷茜儿,但雷茜儿得到宝石的当晚就失窃了。于是探长得以登场大显身手。几经波折,扑朔迷离的案情终于真象渐白。原来是以慈善家面目出现的雷茜儿的表哥艾伯怀特偷走了宝石。艾伯怀特一方面为了逃避印度爱国者的追索,另一方面也为了销赃方便,想把宝石带到阿姆斯特丹去割成几块,他认为宝石如被割成几块,不成完璧,印度爱国者就可能因为不能再镶嵌到月亮神象上而放弃追索。从而有利于他销赃。当然,宝石被割开,价值会大跌。但飞来之财,对艾伯怀特来说也足够他挥霍的了。
回复 支持 反对

使用道具 举报

117#
发表于 2007-2-3 20:18:35 | 只看该作者
 宝石的价值,要看它的纯净度,还要看它的颜色。而在颜色纯度都一样的情况下,其价值与重量的平方成正比。这块宝石,据当时的宝石商,高利贷者鲁克的估价,至少价值30000英镑--这在当时已经可算是天文数字了。而且贪婪的鲁克也是为了杀价才这样压低估价的。就算这块宝石价值30000英镑吧,再假定这块宝石重G克拉(克拉是计算宝石的重量单位,1克=5克拉),于是可知一粒重1克拉的这种



  为方便计,假定艾伯怀特准备把宝石割成重量为x克拉及(G-x)克拉的两块,于是

  割开后宝石价y=Kx2+K(G-x)2=2KX2-2KGx+KG2

  。

  显然,宝石的价格是x的二次函数,其中0<x<G,于是。

    。

  。

  这就是说,割开后宝石价值一定受损失,且当宝石割成相等两块时受损失最大。此时的价值只有原价的一半。
回复 支持 反对

使用道具 举报

118#
发表于 2007-2-3 20:20:42 | 只看该作者
这个问题用几何方法也可以说明。

  如图,取线段AB表示月亮宝石的重量G,即AB=G。

  于是,月亮宝石的价值为KG2=K·SABCD。

  设宝石被割成重为x=AM及G-x=BM的两块。在正方形的各边上依次截取BN=CR=DP=AM,则MNRP也是正方形。



  两块宝石价值和y=kx2+K(G-x)2=K(AM2+AP2)=K·MP2=KSMNRP。

  显然SMNRP<SABCD,即割开后宝石的价值要受损失。

  如果取正方形ABCD的四边中点E、F、G、H,则正方形EFGH的面积xK则表示宝石被割成相等两块时的价值,下面证明SEFGH≤SMNRP。

  不妨设AH>AP。作PS‖AB,交HE于S,且设HE与PM交于O,易证S△OEM=S△OSP。

  于是SAMP=SAEOP+SOSP=SAESP<SAEH。

  ∴SEFGH=SABCD-4SAEH<SABCD-4SAMp=SMNPR。

  即当E、F、G、H为正方形ABCD的四边中点时,其面积取最小



 

  当然,故事的结局是:正当化装成水手的艾伯怀特揣着宝石准备动身上阿姆斯特丹时,探长们赶到了,但三位印度爱国者先到了一步,夺走了宝石并重新把宝石送回国镶嵌在月亮神的前额上去了!
回复 支持 反对

使用道具 举报

119#
发表于 2007-2-3 20:21:14 | 只看该作者
费尔马光行最速原理与费尔马点

  费尔马不仅是位数学家,他在物理学中也有所建树,“光行最速原理”就是由他发现的。由此我们可以解下列问题:由光源A射出的光线,经平面镜MN反射后照到点B,求光走过的路线。

  解:作A关于MN的对称点A′,连A′B交MN于点P,则光线将由A射到P,经反射后到B,这条路线是“最短路线”。实际上,对MN上任一非P的点P,都有AP′+P′B=AP′+P′B>A′B=AP+PB。即这条路线最短。

 

  由此可得到物理学中的反射定律:光经平面镜反射时,入射角等于反射角,在图1中,取P点处法线PQ,则有∠1=∠2。

  在△ABC中,AD、BE、CF分别为三边上的高,△DEF称为△ABC的垂足三角形,可以证明△ABC的重心H是△DEF的内心(图2)。

  实际上,由∠BEA=∠BDA=90°,知B、D、E、A共圆,于是∠CDE=∠BAC。同样,由A、F、D、C共圆,可知∠BDF=∠BAC,于是∠CDE=∠BDF。从而可知DA平分∠EDF。
回复 支持 反对

使用道具 举报

120#
发表于 2007-2-3 20:21:37 | 只看该作者
 同理FC平分∠DFE,EB平分∠DEF。故H是△DEF的内心。

 

  如作D关于AB的对称点D1,可知∠DFB=∠D1FB=∠AFE,于是,D1、F、E在一直线上。同样可知,D关于AC的对称点D2也在直线EF上,即D1、F、E、D2四点在一条直线上。

  现在,我们来看由法格拉洛提出的一个问题:在△ABC的每条边上各取一点D、E、F,△DEF称为△ABC的内接三角形。试在锐角三角形ABC的所有内接三角形中,求周长最短的三角形。

  费尔马提出了一种解法,这个解法分成三步来解:

 

  (1)设D是BC上固定点,求此时的周长最短的内接三角形。

  作D关于AB、AC的对称点D1、D2,连D1D2交AB、AC于E、F,则△DEF为所求。实际上,对于△ABC的任一内接△DE′F′,有

  DE′+E′F′+F′D=D1E′+E′F′+F′D2

  ≥D1D2=D1E+EF+FD2

  =DE+EF+FD。

  就是△DEF的周长≤△DEF的周长。

  因此,我们只要对于每一个BC上的点D,都找出相应于该点的周长最短的内接三角形DEF,在这些三角形中找出周长最短的一个就行。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

409|

小黑屋|手机版|新儿教资料网-祝孩子们天天健康快乐! ( 闽ICP备19010693号-1|广告自助中心  

闽公网安备 35052502000123号

GMT+8, 2025-7-16 22:18 , Processed in 0.078191 second(s), 27 queries , Redis On.

Powered by etjy.com! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表