祝孩子们天天健康快乐!

 找回密码
 注册

搜索
热搜: 儿童 教育 英语
楼主: chen_crx
打印 上一主题 下一主题

[格林·杜曼(美)] 如何教宝宝数学

[复制链接]
131#
发表于 2007-3-23 11:37:24 | 只看该作者
七座桥的故事
  沿着俄国和波兰的边界,有一条长长的布格河。这条河流经俄国的古城康尼斯堡——它就是今天俄罗斯西北边界城市加里宁格勒。

  布格河横贯康尼斯堡城区,它有两条支流,一条称新河,另一条叫旧河,两河在城中心会合后,成为一条主流,叫做大河。在新旧两河与大河之间,夹着一块岛形地带,这里是城市的繁华地区。全城分为北、东、南、岛四个区,各区之间共有七座桥梁联系着。

  人们长期生活在河畔、岛上,来往于七桥之间。有人提出这样一个问题:能不能一次走遍所有的七座桥,而每座桥只准经过一次?问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。最后,人们只好把这个问题向俄国科学院院士欧拉提出,请他帮助解决。
回复 支持 反对

使用道具 举报

132#
发表于 2007-3-23 11:40:04 | 只看该作者
 公元1737年,欧拉接到了“七桥问题”,当时他三十岁。他心里想:先试试看吧。他从中间的岛区出发,经过一号桥到达北区,又从二号桥回到岛区,过四号桥进入东区,再经五号桥到达南区,然后过六号桥回到岛区。现在,只剩下三号和七号两座桥没有通过了。显然,从岛区要过三号桥,只有先过一号、二号或四号桥,但这三座桥都走过了。这种走法宣告失败。欧拉又换了一种走法:

  岛东北岛南岛北

  这种走法还是不行,因为五号桥还没有走过。
回复 支持 反对

使用道具 举报

133#
发表于 2007-3-23 11:41:54 | 只看该作者
 欧拉连试了好几种走法都不行,这问题可真不简单!他算了一下,走法很多,共有

  7×6×5×4×3×2×1=5040(种)。

  好家伙,这样一种方法,一种方法试下去,要试到哪一天,才能得出答案呢?他想:不能这样呆笨地试下去,得想别的方法。

  聪明的欧拉终于想出一个巧妙的办法。他用A代表岛区、B、C、D分别代表北、东、西三区,并用曲线弧或直线段表示七座桥,这样一来,七座桥的问题,就转变为数学分支“图论”中的一个一笔画问题,即能不能一笔头不重复地画出上面的这个图形。
回复 支持 反对

使用道具 举报

134#
发表于 2007-3-23 11:46:12 | 只看该作者
欧拉集中精力研究了这个图形,发现中间每经过一点,总有画到那一点的一条线和从那一点画出来的一条线。这就是说,除起点和终点以外,经过中间各点的线必然是偶数。像上面这个图,因为是一个封闭的曲线,因此,经过所有点的线都必须是偶数才行。而这个图中,经过A点的线有五条,经过B、C、D三点的线都是三条,没有一个是偶数,从而说明,无论从那一点出发,最后总有一条线没有画到,也就是有一座桥没有走到。欧拉终于证明了,要想一次不重复地走完七座桥,那是不可能的。

  天才的欧拉只用了一步证明,就概括了5040种不同的走法,从这里我们可以看到,数学的威力多么大呀!
回复 支持 反对

使用道具 举报

135#
发表于 2007-3-23 11:53:05 | 只看该作者
“飞矢不动”

  养由基是我国古代最有名的射手。他射箭的技术非常高超,如果任意在一棵杨树上指定一片树叶,养由基站在百步之外,弯弓搭箭,嗖的一声,这片树叶就被他射穿了。这就是“百步穿杨”的功夫。

  有一天,养由基正在表演他的“百步穿杨”绝技,有一个叫芝诺的希腊人走了过来,笑嘻嘻地说:“我今天准保能让你的飞矢不动!”
回复 支持 反对

使用道具 举报

136#
发表于 2007-3-23 11:59:30 | 只看该作者
养由基听了大惑不解,说:“我射出的箭谁都阻挡不住,你怎么能让它飞着飞着突然就不动了呢?”

  芝诺神秘兮兮地说:“我说你的箭是根本无法射出的。”

  养由基更觉奇怪,“我的弓是最好的弓,箭也是最好的箭,我又是天下无双的射手,怎么可能射不出箭呢?”
回复 支持 反对

使用道具 举报

137#
发表于 2007-3-23 12:01:50 | 只看该作者
 芝诺说:“那你就听我慢慢说出其中缘故吧。现在假定你张满了弓,搭上了箭,箭头设为点O,你瞄准了百步之外的杨树叶点A。你的箭最后要射中点A,对吗?”

  养由基说:“当然万无一失要射中的!”

  “好,你听着,你的箭要射中A,必定要先经过线段OA的中点A1,对吗?”

  “对!”

  “箭要经过A1,又得先经过线段OA1的中点A2,对吗?”

  “是呀!”

  “要经过A2,又必须先经过线段OA2的中点A3,这也是对的吧?”

  “一点也不错。”
回复 支持 反对

使用道具 举报

138#
发表于 2007-3-23 12:04:32 | 只看该作者
 “你想想,OA3还有中点A4,那你的箭又要先经过A4啰”,等养由基回答,芝诺又说了:“照此下去,要经过点An,都必须先经过OAn的中点An+1,这自然是千真万确的啰,于A1、A2、A3,……这些点一个比一个更靠近点O,而每个线段又总是有它的中点,那么,请问,你的箭最先应该经过哪一个点呢?”

  养由基这一下抓头了。“是呀,我的箭最先应该经过哪个点呢?这倒真成问题了。我射箭这么多年了,我还真从来没有想过这个问题呢!”
回复 支持 反对

使用道具 举报

139#
发表于 2007-3-23 12:06:15 | 只看该作者
 “是呀!”芝诺这一下可神气起来了,“你既然连你的箭首先通过哪个点都找不到,又怎么能让你的箭依次通过后面的那些点呢?”

  养由基放下了弓,沉默不语了。

  芝诺洋洋得意起来:“现在你该服了吧。所以我说,你的箭是根本射不出去的,这也就是说:‘飞矢不动’了。”

  养由基是中国人,芝诺则是希腊有名的诡辩家,他们当然不会有这番对话,但这个故事却是古代希腊的几个有名的悖论之一。
回复 支持 反对

使用道具 举报

140#
发表于 2007-3-23 12:07:47 | 只看该作者
 与这个悖论相似,芝诺还设计了另外一些悖论,“阿其里斯追龟”则又是其中的一个:

  据说阿其里斯是跑得非常快的一个人,芝诺却说,阿其里斯追不上乌龟。

  假定乌龟在阿其里斯前面10米,而阿其里斯的速度是乌龟的10倍,那么,当阿其里斯跑完10米时,乌龟已经前进1米,而当阿其里斯再前进1米时,乌龟又前进了0.1米,仍在阿其里斯前面,阿其里斯再前进0.1米,乌龟又前进了0.01米,……,如此下去,乌龟永远在阿其里斯前面,所以尽管阿其里斯跑得飞快,也永远追不上乌龟!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

26|

小黑屋|手机版|新儿教资料网-祝孩子们天天健康快乐! ( 闽ICP备19010693号-1|广告自助中心  

闽公网安备 35052502000123号

GMT+8, 2025-5-6 21:18 , Processed in 0.117983 second(s), 27 queries , Redis On.

Powered by etjy.com! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表