|
3#

楼主 |
发表于 2010-1-26 14:48:19
|
只看该作者
鸡兔同笼(三)
典型应用题之鸡兔同笼 一,基本问题 "鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解.因此很有必要学会它的解法和思路.
例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只
解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是 244÷2=122(只). 在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数 122-88=34, 有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只. 上面的计算,可以归结为下面算式: 总脚数÷2-总头数=兔子数. 上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法. 还说例1. 如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了 88×4-244=108(只). 每只鸡比兔子少(4-2)只脚,所以共有鸡 (88×4-244)÷(4-2)= 54(只). 说明我们设想的88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式 鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数). 当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了 244-176=68(只). 每只鸡比每只兔子少(4-2)只脚, 68÷2=34(只). 说明设想中的"鸡",有34只是兔子,也可以列出公式 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数). 上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数. 假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"假设法". 现在,拿一个具体问题来试试上面的公式.
例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支
解:以"分"作为钱的单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚. 现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有
蓝笔数=(19×16-280)÷(19-11) =24÷8 =3(支). 红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔. 对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的"脚数"19与11之和是30.我们也可以设想16只中,8只是"兔子",8只是"鸡",根据这一设想,脚数是 8×(11+19)=240. 比280少40. 40÷(19-11)=5. 就知道设想中的8只"鸡"应少5只,也就是"鸡"(蓝铅笔)数是3. 30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算. 实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,"兔数"为10,"鸡数"为6,就有脚数 19×10+11×6=256. 比280少24. 24÷(19-11)=3, 就知道设想6只"鸡",要少3只. 要使设想的数,能给计算带来方便,常常取决于你的心算本领. |
评分
-
查看全部评分
|